A long-acting pharmacological grade interleukin-7 molecule logarithmically accelerates UCAR-T proliferation, differentiation, and tumor killing. Washington University in St. Louis School of Medicine Matthew L. Cooper¹, Karl Staser^{1, 2}, Jessica Davenport¹, Julie Ritchey¹, Byung Ha Lee³, Jaehan Park³, John DiPersio¹ 1. Division of Oncology; 2. Division of Dermatology Department of Medicine, Washington University in St. Louis, MO 3. NeoImmuneTech, Inc., Rockville, MD. Background: Chimeric antigen receptor T cell (CAR-T) therapy is revolutionizing modern cancer therapy with two anti-CD19 CAR-Ts FDA-approved for relapsed/refractory B cell lymphoma/leukemia and many other CAR-Ts undergoing clinical trials. Our group recently developed a multiplexed CRISPR/Cas9 gene-editing "off-the-shelf" CAR-T for the treatment of T cell malignancies without inducing fratricide or causing GVHD¹. In current clinical practice, suboptimal CAR-T persistence permits tumor cell escape and, ultimately, disease relapse. We hypothesized that a pro-lymphoid growth factor such as the long-acting form of recombinant human interleukin-7 fused with hybrid Fc (rhll-7-hyFc, NT-I7, NeoImmuneTech, Inc.) could promote CAR-T persistence and increase efficacy. Methods: To create anti-CD19 universal CAR-T (UCART19), we activated human T cells with anti-CD3/CD28 beads, electroporated the T cells with Cas9 mRNA and a TRAC-targeted gRNA, and virally transduced an anti-CD19 3rd generation CAR containing a 2A-cleaved truncated human CD34 allowing for both purification and tracking of CAR-T in vivo. Residual TRAC+ cells were depleted using magnetic selection. For xenograft tumor modeling in vivo, we injected NSG mice with 5x10⁵ Ramos^{CBR-GFP} cells four days prior to UCART19 (2x10⁶ cells) infusion. Mice were treated with NT-I7 (10mg/kg SC) on days +1, +15 and +29 post UCART19 infusion. **Fig 1. NT-17 enhances CAR-T efficacy.** Three weeks post UCART19 infusion, bioluminescent imaging (BLI) revealed minimal tumor signal in *UCART19+NT-I7* treated mice (10⁸ vs. 10¹⁰ photon flux/s, p<0.05, *UCART19+NT-I7* vs. *UCART19*) and near-undetectable photon flux/s at four weeks (10⁷ vs 10¹¹ photon flux/s, p<0.0001, *UCART19+NT-I7* vs. *UCART19*). **Fig 2. NT-17 prolongs survival of UCART19 treated mice**. Ramos^{CBR-GFP} mice treated with UCART19 alone (*UCART19* group) survived 29 days, 100% of Ramos^{CBR-GFP} mice treated with UCART19 and NT-I7 (*UCART19+NT-I7* group) were alive at 80 days with no mouse showing signs of xenogeneic GVHD (p<0.0001, *UCART19+NT-I7* vs. *UCART19*). **Fig 3. NT-I7 enhances CAR-T expansion and persistence.** Quantitative 17-parameter flow cytometric analyses of blood reveals logarithmic expansion of UCART19 cells in mice receiving NT-I7. <u>Discussion:</u> CAR-T cells engineered to express either interleukin-7, or transgenic IL-7 receptors have demonstrated enhanced efficacy against hematologic and solid organ malignancies in vivo^{2,3}. However, genetically engineered potentiation strategies lack "off-switches" and may induce severe toxicities in human clinical trials. Here, we demonstrate that the use of pharmacological grade, long-acting interleukin-7 agonist can potentially mitigate toxicity problems induced by engineered II-7/II-7R CAR-T, allowing NT-I7 dosing and timing to be adjusted. NT-I7 can dramatically enhance gene modified T-cell proliferation, persistence, and tumor killing in vivo, resulting in enhanced survival and providing a tunable clinic-ready adjuvant for reversing suboptimal CAR-T activity in vivo. ## References 1 Cooper et al, Leukemia, 2018 2.ShuM et al, Cancer Discovery 2017 3. Adachi et al, Nature Biotechnology, 2018 Funding This work was funded by the Alvin J Siteman Cancer Research Fund.